全球金融危机和共同衰退已重新讨论有关宏观经济数据中趋势周期发现的讨论,而Boosting最近将流行的HP过滤器升级为适合数据丰富和快速计算环境的现代机器学习设备。本文阐明了其在趋势周期测定中的多功能性,以简单的方式解释了HP滤波器平滑性和通过增强一般趋势检测而提供的一致性。应用于FRED数据库中的时间序列的宇宙,在及时捕获随后的危机和恢复局的衰退中提高其他方法的表现。凭借其广泛的适用性,增强的HP过滤器是宏观经济学工具包的有用的自动化机器学习。
translated by 谷歌翻译
由于Covid-19-19疫苗可用,因此没有研究量化不同的灾难疏散策略如何减轻避难所中的大流行风险。因此,我们应用了一个年龄结构化的流行病学模型,称为易感性暴露感染(SEIR)模型,以研究台湾不同的疫苗摄取水平以及在台湾实施的转移方案在多大程度上降低了感染和延迟流行峰值的情况。台湾的转移协议涉及转移因曝光而自我占用的人,从而阻止了他们与集体庇护所的普通公众融合。转移方案,结合足够的疫苗摄取,可以减少相对于没有这种策略的情况,相对于场景,感染的最大数量和延迟爆发。当所有暴露的人的转移是不可能的,或者疫苗的摄取不足时,转移方案仍然很有价值。此外,一组主要由年轻人人口组成的撤离者往往会早日出现大流行峰值,并且在实施转移方案时,多数老年人组的感染比多数老年人多。但是,当不执行转移方案时,多数老年人群体比大多数年轻成人群体高达20%。
translated by 谷歌翻译
自然图像和医学图像之间的根本差异最近有利于对医学图像应用中的Imagenet转移学习使用自我监督学习(SSL)。图像类型之间的差异主要是由于成像方式和医学图像利用了广泛的基于物理的技术,而自然图像仅使用可见光捕获。尽管许多人证明了医学图像上的SSL导致了更好的下游任务绩效,但我们的工作表明可以获得更多的性能。在构建学习问题时,经常不考虑用于获取医学图像的科学原理。因此,我们建议在生成SSL期间合并定量成像原理,以提高图像质量和定量生物学准确性。我们表明,这种培训模式可为有限数据的下游监督培训提供更好的起始状态。我们的模型还生成了验证临床定量分析软件的图像。
translated by 谷歌翻译
尽管近期因因果推断领域的进展,迄今为止没有关于从观察数据的收集治疗效应估算的方法。对临床实践的结果是,当缺乏随机试验的结果时,没有指导在真实情景中似乎有效的指导。本文提出了一种务实的方法,以获得从观察性研究的治疗效果的初步但稳健地估算,为前线临床医生提供对其治疗策略的信心程度。我们的研究设计适用于一个公开问题,估算Covid-19密集护理患者的拳击机动的治疗效果。
translated by 谷歌翻译
Dataset scaling, also known as normalization, is an essential preprocessing step in a machine learning pipeline. It is aimed at adjusting attributes scales in a way that they all vary within the same range. This transformation is known to improve the performance of classification models, but there are several scaling techniques to choose from, and this choice is not generally done carefully. In this paper, we execute a broad experiment comparing the impact of 5 scaling techniques on the performances of 20 classification algorithms among monolithic and ensemble models, applying them to 82 publicly available datasets with varying imbalance ratios. Results show that the choice of scaling technique matters for classification performance, and the performance difference between the best and the worst scaling technique is relevant and statistically significant in most cases. They also indicate that choosing an inadequate technique can be more detrimental to classification performance than not scaling the data at all. We also show how the performance variation of an ensemble model, considering different scaling techniques, tends to be dictated by that of its base model. Finally, we discuss the relationship between a model's sensitivity to the choice of scaling technique and its performance and provide insights into its applicability on different model deployment scenarios. Full results and source code for the experiments in this paper are available in a GitHub repository.\footnote{https://github.com/amorimlb/scaling\_matters}
translated by 谷歌翻译
We present a machine-learning framework to accurately characterize morphologies of Active Galactic Nucleus (AGN) host galaxies within $z<1$. We first use PSFGAN to decouple host galaxy light from the central point source, then we invoke the Galaxy Morphology Network (GaMorNet) to estimate whether the host galaxy is disk-dominated, bulge-dominated, or indeterminate. Using optical images from five bands of the HSC Wide Survey, we build models independently in three redshift bins: low $(0<z<0.25)$, medium $(0.25<z<0.5)$, and high $(0.5<z<1.0)$. By first training on a large number of simulated galaxies, then fine-tuning using far fewer classified real galaxies, our framework predicts the actual morphology for $\sim$ $60\%-70\%$ host galaxies from test sets, with a classification precision of $\sim$ $80\%-95\%$, depending on redshift bin. Specifically, our models achieve disk precision of $96\%/82\%/79\%$ and bulge precision of $90\%/90\%/80\%$ (for the 3 redshift bins), at thresholds corresponding to indeterminate fractions of $30\%/43\%/42\%$. The classification precision of our models has a noticeable dependency on host galaxy radius and magnitude. No strong dependency is observed on contrast ratio. Comparing classifications of real AGNs, our models agree well with traditional 2D fitting with GALFIT. The PSFGAN+GaMorNet framework does not depend on the choice of fitting functions or galaxy-related input parameters, runs orders of magnitude faster than GALFIT, and is easily generalizable via transfer learning, making it an ideal tool for studying AGN host galaxy morphology in forthcoming large imaging survey.
translated by 谷歌翻译
A long-standing goal of machine-learning-based protein engineering is to accelerate the discovery of novel mutations that improve the function of a known protein. We introduce a sampling framework for evolving proteins in silico that supports mixing and matching a variety of unsupervised models, such as protein language models, and supervised models that predict protein function from sequence. By composing these models, we aim to improve our ability to evaluate unseen mutations and constrain search to regions of sequence space likely to contain functional proteins. Our framework achieves this without any model fine-tuning or re-training by constructing a product of experts distribution directly in discrete protein space. Instead of resorting to brute force search or random sampling, which is typical of classic directed evolution, we introduce a fast MCMC sampler that uses gradients to propose promising mutations. We conduct in silico directed evolution experiments on wide fitness landscapes and across a range of different pre-trained unsupervised models, including a 650M parameter protein language model. Our results demonstrate an ability to efficiently discover variants with high evolutionary likelihood as well as estimated activity multiple mutations away from a wild type protein, suggesting our sampler provides a practical and effective new paradigm for machine-learning-based protein engineering.
translated by 谷歌翻译
Most previous unsupervised domain adaptation (UDA) methods for question answering(QA) require access to source domain data while fine-tuning the model for the target domain. Source domain data may, however, contain sensitive information and may be restricted. In this study, we investigate a more challenging setting, source-free UDA, in which we have only the pretrained source model and target domain data, without access to source domain data. We propose a novel self-training approach to QA models that integrates a unique mask module for domain adaptation. The mask is auto-adjusted to extract key domain knowledge while trained on the source domain. To maintain previously learned domain knowledge, certain mask weights are frozen during adaptation, while other weights are adjusted to mitigate domain shifts with pseudo-labeled samples generated in the target domain. %As part of the self-training process, we generate pseudo-labeled samples in the target domain based on models trained in the source domain. Our empirical results on four benchmark datasets suggest that our approach significantly enhances the performance of pretrained QA models on the target domain, and even outperforms models that have access to the source data during adaptation.
translated by 谷歌翻译
The study aims the development of a wearable device to combat the onslaught of covid-19. Likewise, to enhance the regular face shield available in the market. Furthermore, to raise awareness of the health and safety protocols initiated by the government and its affiliates in the enforcement of social distancing with the integration of computer vision algorithms. The wearable device was composed of various hardware and software components such as a transparent polycarbonate face shield, microprocessor, sensors, camera, thin-film transistor on-screen display, jumper wires, power bank, and python programming language. The algorithm incorporated in the study was object detection under computer vision machine learning. The front camera with OpenCV technology determines the distance of a person in front of the user. Utilizing TensorFlow, the target object identifies and detects the image or live feed to get its bounding boxes. The focal length lens requires the determination of the distance from the camera to the target object. To get the focal length, multiply the pixel width by the known distance and divide it by the known width (Rosebrock, 2020). The deployment of unit testing ensures that the parameters are valid in terms of design and specifications.
translated by 谷歌翻译
In this paper, a complete framework for Autonomous Self Driving is implemented. LIDAR, Camera and IMU sensors are used together. The entire data communication is managed using Robot Operating System which provides a robust platform for implementation of Robotics Projects. Jetson Nano is used to provide powerful on-board processing capabilities. Sensor fusion is performed on the data received from the different sensors to improve the accuracy of the decision making and inferences that we derive from the data. This data is then used to create a localized map of the environment. In this step, the position of the vehicle is obtained with respect to the Mapping done using the sensor data.The different SLAM techniques used for this purpose are Hector Mapping and GMapping which are widely used mapping techniques in ROS. Apart from SLAM that primarily uses LIDAR data, Visual Odometry is implemented using a Monocular Camera. The sensor fused data is then used by Adaptive Monte Carlo Localization for car localization. Using the localized map developed, Path Planning techniques like "TEB planner" and "Dynamic Window Approach" are implemented for autonomous navigation of the vehicle. The last step in the Project is the implantation of Control which is the final decision making block in the pipeline that gives speed and steering data for the navigation that is compatible with Ackermann Kinematics. The implementation of such a control block under a ROS framework using the three sensors, viz, LIDAR, Camera and IMU is a novel approach that is undertaken in this project.
translated by 谷歌翻译